Abstract

Artificial intelligence (AI) techniques, particularly the neural networks, are recently having significant impact on power electronics and motor drives. Neural networks have created a new and advancing frontier in power electronics, which is already a complex and multidisciplinary technology that is going through dynamic evolution in the recent years. This paper gives a comprehensive introduction and perspective of neural network applications in the intelligent control and estimation for power electronics and motor drives area. The principal topologies of neural networks that are currently most relevant for applications in power electronics have been reviewed including the detailed description of their properties. Both feedforward and feedback or recurrent architectures have been covered in the description. The application examples that are discussed in this paper include nonlinear function generation, delayless filtering and waveform processing, feedback signal processing of vector drive, space vector PWM of two-level and multilevel inverters, adaptive flux vector estimation, and some of their combination for vector-controlled ac drive. Additional selected applications in the literature are included in the references. From the current trend of the technology, it appears that neural networks will find widespread applications in power electronics and motor drives in future

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.