Abstract
The authors consider neural network applications to robotic motion control in which the controller is used for the position and force control of robotic manipulators. The proposed neural servo controller is based on a neural network consisting of two hidden layers and input/output layers. The controller can adjust the neural network output to the robot in the forward manner to cooperate with the feedback loop, depending on unknown characteristics of handling objects. In particular, the proposed neural network has delay elements in itself, so that it can learn the dynamics of the system. Simulations are carried out for the case of one- and two-dimensional robotic manipulators. The performance of the proposed neural servo controller is shown in terms of its frequency response, and the robustness against impulsive noises is also shown. The authors propose a fuzzy turbo to avoid stagnation, so that the neural network can learn the dynamical system quickly
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.