Abstract
In the recent past, machine learning (ML) techniques such as artificial neural networks (ANN) have been increasingly used to model algal bloom dynamics. In the present paper, along with ANN, we select genetic programming (GP) for modelling and prediction of algal blooms in Tolo Harbour, Hong Kong. The study of the weights of the trained ANN and also the GP-evolved equations shows that they correctly identify the ecologically significant variables. Analysis of various ANN and GP scenarios indicates that good predictions of long-term trends in algal biomass can be obtained using only chlorophyll-a as input. The results indicate that the use of biweekly data can simulate long-term trends of algal biomass reasonably well, but it is not ideally suited to give short-term algal bloom predictions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Environment and Pollution
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.