Abstract

In order to overcome the system nonlinear instability and uncertainty inherent in magnetic bearing systems, two PID neural network controllers (BP-based and GA-based) are designed and trained to emulate the operation of a complete system. Through the theoretical deduction and simulation results, the principles for the parameters choice of two neural network controllers are given. The feasibility of using the neural network to control nonlinear magnetic bearing systems with un-known dynamics is demonstrated. The robust performance and reinforcement learning capability in controlling magnetic bearing systems are compared between two PID neural network controllers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.