Abstract
The adaptive neural-network (NN) output-feedback control problem is investigated for a quarter-car active suspension system. The sprung mass and the suspension stiffness in the considered suspension system are unknown, and the part states are not measured directly. In the control design, NNs are employed to approximate the unknown nonlinear dynamics, and an NN state observer is given to estimate the immeasurable states. By using the adaptive backstepping control design technique and introducing the command filter method, an observer-based NN output-feedback control algorithm is developed, in which the input saturation constraint is compensated via constructing an auxiliary system. It is proved that all the variables of the controlled system are bounded, and the ride comfort, ride safety condition, and suspension space limit are guaranteed. The computer simulation and compared results further show the effectiveness of the proposed control algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.