Abstract

A variant of the FitzHugh-Nagumo model is proposed in order to fully make use of the computational properties of intraneuronal dynamics. The mechanisms of threshold and refractory periods resulting from the double dynamical processes are qualitatively studied through computer simulation. The results show that the variant neuron model has the property that its threshold, refractory period and response amplitude are dynamically adjustable. This paper has also discussed some problems relating to collective property, learning and implementation of the neural network based on the neuron model proposed. It is noted that the implicit way to describe threshold and refractory period is advantageous to adaptive learning in neural networks and that molecular electronics probably provides an effective approach to implementing the above neuron model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.