Abstract

Mental and physical efforts, such as paying attention and lifting weights, have been shown to involve different brain systems. These cognitive and motor systems, respectively, include cortical networks (prefronto-parietal and precentral regions) as well as subregions of the dorsal basal ganglia (caudate and putamen). Both systems appeared sensitive to incentive motivation: their activity increases when we work for higher rewards. Another brain system, including the ventral prefrontal cortex and the ventral basal ganglia, has been implicated in encoding expected rewards. How this motivational system drives the cognitive and motor systems remains poorly understood. More specifically, it is unclear whether cognitive and motor systems can be driven by a common motivational center or if they are driven by distinct, dedicated motivational modules. To address this issue, we used functional MRI to scan healthy participants while performing a task in which incentive motivation, cognitive, and motor demands were varied independently. We reasoned that a common motivational node should (1) represent the reward expected from effort exertion, (2) correlate with the performance attained, and (3) switch effective connectivity between cognitive and motor regions depending on task demand. The ventral striatum fulfilled all three criteria and therefore qualified as a common motivational node capable of driving both cognitive and motor regions of the dorsal striatum. Thus, we suggest that the interaction between a common motivational system and the different task-specific systems underpinning behavioral performance might occur within the basal ganglia.

Highlights

  • There are many situations in life where the outcome depends on how much effort we exert

  • Incentive motivation refers to the process in the brain by which we translate the expectation of a potential reward into the effort required to do an action, as for instance when the expected paycheck brings the employee to work

  • Cognitive, and motor representations are known to rely on distinct regions of the frontal cortex and basal ganglia

Read more

Summary

Introduction

There are many situations in life where the outcome depends on how much effort we exert. An athlete who wishes to win a marathon must train hard. The athlete is likely to train even harder if the race is associated with higher outcomes in terms of social prestige or monetary prize. Incentive motivation refers to the set of processes that translate higher expected rewards into higher effort exertion [1]. These processes include forming a subjective representation of potential reward magnitude capable of boosting behavioral performance. We investigate the neural mechanisms that underpin incentive motivation of mental versus physical efforts. We ask whether mental and physical efforts are driven by a common, generic motivational center or if they are driven by distinct, dedicated modules

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.