Abstract

Responses of chinchilla auditory nerve fibers to brief probe tones in the presence of a fixed tonal masker were obtained. The stimulus conditions were analogous to those that have been used in many psychophysical experiments. The relation between previously described response properties of auditory nerve fibers and features of psychophysical tone-on-tone masking was examined. In psychophysical studies, a fixed narrowband masker produces a characteristic pattern of masked thresholds, which becomes broad and asymmetrical at high masker levels. In the present experiment 1, a 5,000-Hz masker was presented at 30, 50, and 70 dB SPL. Masked thresholds based on the average rate of response to probe tones were estimated for single auditory nerve fibers. The lowest of these masked thresholds formed a pattern similar to the psychophysical masking pattern, becoming broader and more asymmetrical as the masker was increased to 70 dB SPL. The masked thresholds of fibers with low and medium rates of spontaneous discharge (SR) were as low as or lower than the masked thresholds of fibers with high SRs. In certain frequency regions, masked thresholds based on responses to cochlear distortion products were lower than the masked thresholds of any fiber responding to the probe tone; this result is also similar to previous psychophysical observations. In experiment 2, responses of chinchilla auditory nerve fibers to probe tones in the presence of a masker at 1,000 Hz and 50 dB SPL were studied. Probe tone thresholds in the presence of this masker have been measured psychophysically in chinchillas. Thus the relation between behavioral and neural masked thresholds in the same species could be examined. Masked thresholds were estimated from average discharge rate responses and also from discharge synchrony. Good quantitative agreement was observed between the probe tone levels at which changes in average discharge rate were observed and the chinchilla's behavioral masked thresholds. For fibers matched for characteristic frequency, the masked thresholds based on average discharge rate of high-SR fibers tended to be elevated compared with the thresholds of medium-SR fibers. Changes in discharge rate synchronized to the probe tone occurred at levels lower than the chinchilla's behavioral masked thresholds. If discharge synchrony can be used for detection, the code would appear to be based on the relative synchrony to the probe tone and to the masking tone. Low synchrony masked thresholds were obtained from fibers with all SRs.(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call