Abstract

How the human brain reconstructs the three-dimensional (3D) world from two-dimensional (2D) retinal images has received a great deal of interest as has how we shift attention in 2D space. In contrast, it remains poorly understood how visuospatial attention is shifted in depth. In this fMRI study, by constructing a virtual 3D environment in the MR scanner and by presenting targets either close to or far from the participants in an adapted version of the Posner spatial-cueing paradigm, we investigated the behavioral and neural mechanisms underlying visuospatial orienting/reorienting in depth. At the behavioral level, although covering the same spatial distance, attentional reorienting to objects unexpectedly appearing closer to the observer and in the unattended hemispace was faster than reorienting to unexpected objects farther away. At the neural level, we found that in addition to the classical attentional reorienting system in the right temporoparietal junction, two additional brain networks were differentially involved in aspects of attentional reorienting in depth. First, bilateral premotor cortex reoriented visuospatial attention specifically along the third dimension of visual space (i.e., from close to far or vice versa), compared with attentional reorienting within the same depth plane. Second, a network of areas reminiscent of the human "default-mode network," including posterior cingulate cortex, orbital prefrontal cortex, and left angular gyrus, was involved in the neural interaction between depth and attentional orienting, by boosting attentional reorienting to unexpected objects appearing both closer to the observer and in the unattended hemispace.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.