Abstract
The medial frontal cortex (MFC) plays an important but disputed role in speed-accuracy trade-off (SAT). In samples of neural spiking in the supplementary eye field (SEF) in the MFC simultaneous with the visuomotor frontal eye field and superior colliculus in macaques performing a visual search with instructed SAT, during accuracy emphasis, most SEF neurons discharge less from before stimulus presentation until response generation. Discharge rates adjust immediately and simultaneously across structures upon SAT cue changes. SEF neurons signal choice errors with stronger and earlier activity during accuracy emphasis. Other neurons signal timing errors, covarying with adjusting response time. Spike correlations between neurons in the SEF and visuomotor areas did not appear, disappear, or change sign across SAT conditions or trial outcomes. These results clarify findings with noninvasive measures, complement previous neurophysiological findings, and endorse the role of the MFC as a critic for the actor instantiated in visuomotor structures.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.