Abstract

Communication is fundamental for our understanding of behavior. In the acoustic modality, natural scenes for communication in humans and animals are often very noisy, decreasing the chances for signal detection and discrimination. We investigated the mechanisms enabling selective hearing under natural noisy conditions for auditory receptors and interneurons of an insect. In the studied katydid Mecopoda elongata species-specific calling songs (chirps) are strongly masked by signals of another species, both communicating in sympatry. The spectral properties of the two signals are similar and differ only in a small frequency band at 2 kHz present in the chirping species. Receptors sharply tuned to 2 kHz are completely unaffected by the masking signal of the other species, whereas receptors tuned to higher audio and ultrasonic frequencies show complete masking. Intracellular recordings of identified interneurons revealed two mechanisms providing response selectivity to the chirp. (1) Response selectivity is when several identified interneurons exhibit remarkably selective responses to the chirps, even at signal-to-noise ratios of -21 dB, since they are sharply tuned to 2 kHz. Their dendritic arborizations indicate selective connectivity with low-frequency receptors tuned to 2 kHz. (2) Novelty detection is when a second group of interneurons is broadly tuned but, because of strong stimulus-specific adaptation to the masker spectrum and "novelty detection" to the 2 kHz band present only in the conspecific signal, these interneurons start to respond selectively to the chirp shortly after the onset of the continuous masker. Both mechanisms provide the sensory basis for hearing at unfavorable signal-to-noise ratios. Significance statement: Animal and human acoustic communication may suffer from the same "cocktail party problem," when communication happens in noisy social groups. We address solutions for this problem in a model system of two katydids, where one species produces an extremely noisy sound, yet the second species still detects its own song. Using intracellular recording techniques we identified two neural mechanisms underlying the surprising behavioral signal detection at the level of single identified interneurons. These neural mechanisms for signal detection are likely to be important for other sensory modalities as well, where noise in the communication channel creates similar problems. Also, they may be used for the development of algorithms for the filtering of specific signals in technical microphones or hearing aids.

Highlights

  • Communication is fundamental for our understanding of animal and human behavior

  • Statement Animal and human acoustic communication may suffer from the same “cocktail party problem,” when communication happens in noisy social groups

  • These neural mechanisms for signal detection are likely to be important for other sensory modalities as well, where noise in the communication channel creates similar problems

Read more

Summary

Introduction

Communication is fundamental for our understanding of animal and human behavior. It requires the encoding of information in a Received March 9, 2015; revised May 28, 2015; accepted June 16, 2015. The acoustic environment of many vocalizing species is complex, as it contains a number of unknown sound sources of the same and different species. Signaling in such groups poses problems for receivers to detect and classify signals (Hulse, 2002; Brumm and Slabbekoorn, 2005; Wiley, 2006, 2013). For humans the “cocktail party problem” (Cherry, 1953) refers to the difficulty of understanding speech in noisy social settings (Yost, 1997; Bronkhorst, 2000) Despite this difficulty, humans and other species can successfully listen and orient to individual sound sources, using a process termed auditory scene analysis (Bregman, 1990).

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.