Abstract
Power system control and transient stability analysis play essential roles in secure system operation. Control of power systems typically involves highly nonlinear and complex dynamics. Most of the existing works address such problems with additional assumptions in system dynamics, leading to a requirement for a complete and general solution. This paper, therefore, proposes a novel control framework for various power system control and stability problems leveraging a learning-based approach. The proposed framework includes a two-module structure that iteratively and jointly learns the candidate Lyapunov function and control law via deep neural networks in a learning module. Meanwhile, it guides the learning procedure towards valid results satisfying Lyapunov conditions in a falsification module. The introduced termination criteria ensure provable system stability. This control framework is verified through several studies handling different types of power system control problems. The results show that the proposed framework is generalizable and can simplify the control design for complex power systems with the stability guarantee and enlarged region of attraction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.