Abstract

This article is devoted to the development of general artificial intelligence (AGI) based on a new type of neural networks – “neural-like growing networks”. It consists of two parts. The first one was published in N4, 2022, and describes an artificial neural-like element (artificial neuron) in terms of its functionality, which is as close as possible to a biological neuron. An artificial neural-like element is the main element in building neural-like growing networks. The second part deals with the structures and functions of artificial and natural neural networks. The paper proposes a new approach for creating neural-like growing networks as a means of developing AGI that is as close as possible to the natural intelligence of a person. The intelligence of man and living organisms is formed by their nervous system. According to I.P. Pavlov's definition, the main mechanism of higher nervous activity is the reflex activity of the nervous system. In the nerve cell, the main storage of unconditioned reflexes is the deoxyribonucleic acid (DNA) molecule. The article describes ribosomal protein synthesis that contributes to the implementation of unconditioned reflexes and the formation of conditioned reflexes as the basis for learning biological objects. The first part of the work shows that the structure and functions of ribosomes almost completely coincide with the structure and functions of the Turing machine. Turing invented this machine to prove the fundamental (theoretical) possibility of constructing arbitrarily complex algorithms from extremely simple operations, and the operations themselves are performed automatically. Here arises a stunning analogy, nature created DNA and the ribosome to build complex algorithms for creating biological objects and their communication with each other and with the external environment, and the ribosomal protein synthesis is carried out by many ribosomes at the same time. It was concluded that the nerve cells of the brain are analog multi-machine complexes – ultra-fast molecular supercomputers with an unusually simple analog programming device.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call