Abstract

SummaryActions are guided by a Bayesian-like interaction between priors based on experience and current sensory evidence. Here, we unveil a complete neural implementation of Bayesian-like behavior, including adaptation of a prior. We recorded the spiking of single neurons in the smooth eye movement region of the frontal eye fields (FEFSEM), a region that is causally involved in smooth pursuit eye movements. Monkeys tracked moving targets in contexts that set different priors for target speed. Before the onset of target motion, preparatory activity encodes and adapts in parallel with the behavioral adaptation of the prior. During the initiation of pursuit, FEFSEM output encodes a maximum a posteriori estimate of target speed based on a reliability-weighted combination of the prior and sensory evidence. FEFSEM responses during pursuit are sufficient both to adapt a prior that may be stored in FEFSEM and, through known downstream pathways, to cause Bayesian-like behavior in pursuit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.