Abstract

AbstractThe control of systems that have sandwiched nonsmooth nonlinearities, such as a dead‐zone sandwiched between two dynamic blocks, is addressed. An adaptive inverse control scheme using a hybrid controller structure and a neural network based inverse compensator, is proposed for such systems with unknown sandwiched dead‐zone. This neural‐hybrid controller consists of an inner loop discrete‐time feedback structure incorporated with an adaptive inverse using a neural network for the unknown dead‐zone, and an outer‐loop continuous‐time feedback control law for achieving desired output tracking. The dead‐zone compensator consists of two neural networks, one used as an estimator of the sandwiched dead‐zone function and the other for the compensation itself. The compensator neural network has neurons that can approximate jump functions such as a dead‐zone inverse. The weights of the two neural networks are tuned using a modified gradient algorithm. Simulation results are given to illustrate the performance of the proposed neural‐hybrid controller. Copyright © 2002 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call