Abstract

Computing the similarity between graphs is a longstanding and challenging problem with many real-world applications. Recent years have witnessed a rapid increase in neural-network-based methods, which project graphs into embedding space and devise end-to-end frameworks to learn to estimate graph similarity. Nevertheless, these solutions usually design complicated networks to capture the fine-grained interactions between graphs, and hence have low efficiency. Additionally, they rely on labeled data for training the neural networks and overlook the useful information hidden in the graphs themselves. To address the aforementioned issues, in this work, we put forward a contrastive neural graph similarity learning framework, Conga. Specifically, we utilize vanilla graph convolutional networks to generate the graph representations and capture the cross-graph interactions via a simple multilayer perceptron. We further devise an unsupervised contrastive loss to discriminate the graph embeddings and guide the training process by learning more expressive entity representations. Extensive experiment results on public datasets validate that our proposal has more robust performance and higher efficiency compared with state-of-the-art methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.