Abstract

The common neural network modeling practice of representing the elements of a task domain in terms of a set of features lacks justification if the features are derived through some form of ad hoc preabstraction. By examining a featural similarity model related to established multidimensional scaling techniques, a neural network is developed that generates features from similarity data and attaches weights to these features. The network performs a constrained search of a continuous solution space to determine the features and uses a previously developed regularization technique to minimize the number of features it derives. The network is demonstrated on artificial data, from which it recovers known features and weights, and on two real data sets involving the similarity of a set of geometric shapes and the abstract conceptual similarities of the 10 Arabic numerals. On the basis of these results, the relationship between the multidimensional scaling approach adopted by the network and an alternative additive clustering approach to feature extraction is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.