Abstract
When semantic information is activated by a context prior to new bottom-up input (i.e. when a word is predicted), semantic processing of that incoming word is typically facilitated, attenuating the amplitude of the N400 event related potential (ERP) – a direct neural measure of semantic processing. N400 modulation is observed even when the context is a single semantically related “prime” word. This so-called “N400 semantic priming effect” is sensitive to the probability of encountering a related prime-target pair within an experimental block, suggesting that participants may be adapting the strength of their predictions to the predictive validity of their broader experimental environment. We formalize this adaptation using a Bayesian learning model that estimates and updates the probability of encountering a related versus an unrelated prime-target pair on each successive trial. We found that our model’s trial-by-trial estimates of target word probability accounted for significant variance in trial-by-trial N400 amplitude. These findings suggest that Bayesian principles contribute to how comprehenders adapt their semantic predictions to the statistical structure of their broader environment, with implications for the functional significance of the N400 component and the predictive nature of language processing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.