Abstract

A rhythmic paradigm based on repetition of the syllable “ba” was used to study auditory, visual, and audio-visual oscillatory entrainment to speech in children with and without dyslexia using EEG. Children pressed a button whenever they identified a delay in the isochronous stimulus delivery (500 ms; 2 Hz delta band rate). Response power, strength of entrainment and preferred phase of entrainment in the delta and theta frequency bands were compared between groups. The quality of stimulus representation was also measured using cross-correlation of the stimulus envelope with the neural response. The data showed a significant group difference in the preferred phase of entrainment in the delta band in response to the auditory and audio-visual stimulus streams. A different preferred phase has significant implications for the quality of speech information that is encoded neurally, as it implies enhanced neuronal processing (phase alignment) at less informative temporal points in the incoming signal. Consistent with this possibility, the cross-correlogram analysis revealed superior stimulus representation by the control children, who showed a trend for larger peak r-values and significantly later lags in peak r-values compared to participants with dyslexia. Significant relationships between both peak r-values and peak lags were found with behavioral measures of reading. The data indicate that the auditory temporal reference frame for speech processing is atypical in developmental dyslexia, with low frequency (delta) oscillations entraining to a different phase of the rhythmic syllabic input. This would affect the quality of encoding of speech, and could underlie the cognitive impairments in phonological representation that are the behavioral hallmark of this developmental disorder across languages.

Highlights

  • Temporal coding is a critical aspect of speech processing and is fundamental to phonological representation, the mental representation of the sound structure of human languages

  • We found a significant main effect of group [F(1, 30) = 5.859, p = 0.022, η2p = 0.163], paralleling the results found at Cz for the preferred phase of entrainment analysis

  • The partial correlations suggest that the typicallydeveloping children had stronger neural representations of the speech stimulus “ba,” and that the strongest representation occurred later in time compared to those with dyslexia. These results provide converging evidence for the importance of the phase of low frequency oscillations in stimulus encoding

Read more

Summary

Introduction

Temporal coding is a critical aspect of speech processing and is fundamental to phonological representation, the mental representation of the sound structure of human languages. Temporal coding is thought to be accomplished in part by the synchronous activity of networks of neurons in auditory cortex that align their endogenous oscillations at different preferred rates with matching temporal information in the acoustic speech signal (Poeppel, 2003; Lakatos et al, 2008; Giraud and Poeppel, 2012). Multi-time resolution models (MTRMs) of speech processing capitalize on these neurophysiological processes (e.g., Poeppel, 2003; Ghitza and Greenberg, 2009), and argue that the neural entrainment of these oscillatory networks is occurring at multiple temporal rates in both visual and auditory cortices, with hierarchical and interdependent cross-modal phase interactions, resulting in a coherent representation of the signal and enabling communication between human listeners

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.