Abstract

Neurophysiological data support two models for the disparity selectivity of binocular simple and complex cells in primary visual cortex. These involve binocular combinations of monocular receptive fields that are shifted in retinal position (the position-shift model) or in phase (the phase-shift model) between the two eyes. This article presents a formal description and analysis of a binocular energy model with these forms of disparity selectivity. We propose how one might measure the relative contributions of phase and position shifts in simple and complex cells. The analysis also reveals ambiguities in disparity encoding that are inherent in these model neurons, suggesting a need for a second stage of processing. We propose that linear pooling of the binocular responses across orientations and scales (spatial frequency) is capable of producing an unambiguous representation of disparity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.