Abstract

Convergent research demonstrates disrupted attention and heightened threat sensitivity in posttraumatic stress disorder (PTSD). This might be linked to aberrations in large-scale networks subserving the detection of salient stimuli (i.e., the salience network [SN]) and stimulus-independent, internally focused thought (i.e., the default mode network [DMN]). Resting-state brain activity was measured in returning veterans with and without PTSD (n = 15 in each group) and in healthy community controls (n = 15). Correlation coefficients were calculated between the time course of seed regions in key SN and DMN regions and all other voxels of the brain. Compared with control groups, participants with PTSD showed reduced functional connectivity within the DMN (between DMN seeds and other DMN regions) including the rostral anterior cingulate cortex/ventromedial prefrontal cortex (z = 3.31; p = .005, corrected) and increased connectivity within the SN (between insula seeds and other SN regions) including the amygdala (z = 3.03; p = .01, corrected). Participants with PTSD also demonstrated increased cross-network connectivity. DMN seeds exhibited elevated connectivity with SN regions including the insula (z = 3.06; p = .03, corrected), and SN seeds exhibited elevated connectivity with DMN regions including the hippocampus (z = 3.10; p = .048, corrected). During resting-state scanning, participants with PTSD showed reduced coupling within the DMN, greater coupling within the SN, and increased coupling between the DMN and the SN. Our findings suggest a relative dominance of threat-sensitive circuitry in PTSD, even in task-free conditions. Disequilibrium between large-scale networks subserving salience detection versus internally focused thought may be associated with PTSD pathophysiology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call