Abstract

Auditory long-term memory has been shown to facilitate signal detection. However, the nature and timing of the cognitive processes supporting such benefits remain equivocal. We measured neuroelectric brain activity while young adults were presented with a contextual memory cue designed to assist with the detection of a faint pure tone target embedded in an audio clip of an everyday environmental scene (e.g., the soundtrack of a restaurant). During an initial familiarization task, participants heard such audio clips, half of which included a target sound (memory cue trials) at a specific time and location (left or right ear), as well as audio clips without a target (neutral trials). Following a 1-h or 24-h retention interval, the same audio clips were presented, but now all included a target. Participants were asked to press a button as soon as they heard the pure tone target. Overall, participants were faster and more accurate during memory than neutral cue trials. The auditory contextual memory effects on performance coincided with three temporally and spatially distinct neural modulations, which encompassed changes in the amplitude of event-related potential as well as changes in theta, alpha, beta and gamma power. Brain electrical source analyses revealed greater source activity in memory than neutral cue trials in the right superior temporal gyrus and left parietal cortex. Conversely, neutral trials were associated with greater source activity than memory cue trials in the left posterior medial temporal lobe. Target detection was associated with increased negativity (N2), and a late positive (P3b) wave at frontal and parietal sites, respectively. The effect of auditory contextual memory on brain activity preceding target onset showed little lateralization. Together, these results are consistent with contextual memory facilitating retrieval of target-context associations and deployment and management of auditory attentional resources to when the target occurred. The results also suggest that the auditory cortices, parietal cortex, and medial temporal lobe may be parts of a neural network enabling memory-guided attention during auditory scene analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call