Abstract

Recent behavioral data show that the traditional reduction of all probabilistic choices to choices among monetary gambles is inaccurate. Specifically, while decision makers tend to overweight low probabilities of obtaining any resource, the overweighting is greater when the resource is more emotionally evocative. We present a shunting nonlinear neural network that simulates the biasing effect of emotion on probabilistic choice. The network includes analogs of parts of the amygdala, orbitofrontal cortex, ventral striatum, thalamus, and anterior cingulate as well as sensory and premotor cortices. The network classifies prospective probabilistic options by means of an adaptive resonance module with vigilance selective for those attributes that are deemed most significant for the option currently being processed. The categories into which these options are placed embody significant gists of the options in a manner consistent with fuzzy trace theory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call