Abstract

Nervous systems facing complex environments have to balance two seemingly opposing requirements. First, there is a need quickly and reliably to extract important features from sensory inputs. This is accomplished by functionally segregated (specialized) sets of neurons, e.g. those found in different cortical areas. Second, there is a need to generate coherent perceptual and cognitive states allowing an organism to respond to objects and events, representing conjunctions of numerous individual features. This is accomplished by functional integration of the activity of specialized neurons through their dynamic interactions. These interactions produce patterns of temporal correlations or functional connectivity involving distributed neuronal populations, both within and across cortical areas. Empirical and computational studies suggesting that changes in functional connectivity may underlie specific perceptual and cognitive states involving the integration of information across specialized areas of the brain offer new insights into the linkage between neural dynamics and cognitive synthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.