Abstract

This unit describes the culture and induction of in vitro models of neural differentiation and strategies to evaluate the participation of extrinsic and intrinsic factors in modulation of this process. Protocols focus on large-scale expansion of pluripotent P19 murine embryonic carcinoma cells and their induction to neural differentiation in the presence of retinoic acid, closely resembling conditions of early neuroectodermal differentiation. Procedures are also described for obtaining rat neural precursor cells (NPCs) or neurospheres and for differentiating them in the absence of growth factors. Experimental strategies are reported using P19 cells and NPCs as in vitro models for studying the actions of extrinsic and intrinsic factors on morphology, proliferation, viability, neural phenotype determination, and progress of differentiation, as well as the functionality of ion channels and metabotropic receptors in inducing calcium fluxes at different developmental stages. The methods described here may be useful for optimizing in vitro protocols for stem cell differentiation into defined neural populations, as well as for studying mechanisms that underlie neurogenesis and gliogenesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call