Abstract

We introduce the first dense neural non-rigid structure from motion (N-NRSfM) approach, which can be trained end-to-end in an unsupervised manner from 2D point tracks. Compared to the competing methods, our combination of loss functions is fully-differentiable and can be readily integrated into deep-learning systems. We formulate the deformation model by an auto-decoder and impose subspace constraints on the recovered latent space function in a frequency domain. Thanks to the state recurrence cue, we classify the reconstructed non-rigid surfaces based on their similarity and recover the period of the input sequence. Our N-NRSfM approach achieves competitive accuracy on widely-used benchmark sequences and high visual quality on various real videos. Apart from being a standalone technique, our method enables multiple applications including shape compression, completion and interpolation, among others. Combined with an encoder trained directly on 2D images, we perform scenario-specific monocular 3D shape reconstruction at interactive frame rates. To facilitate the reproducibility of the results and boost the new research direction, we open-source our code and provide trained models for research purposes (http://gvv.mpi-inf.mpg.de/projects/Neural_NRSfM/).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.