Abstract

Histopathologic changes in the thalamus of 23 rats after somatosensory cortical infarction produced by middle cerebral artery occlusion were examined using the Fink-Heimer silver staining method, immunohistochemistry with antibodies against glial fibrillary acidic protein and laminin, and conventional stains. Middle cerebral artery occlusion produced cortical infarcts in the lateral parietal region, with variable involvement of the frontoparietal parasagittal sensorimotor cortex. Within 3 days after occlusion, massive terminal degeneration but no neuronal changes were apparent in the ipsilateral thalamus. By 1 week after occlusion, abnormal neurons with darkly stained, shrunken nuclei and atrophic perikarya were present in the ipsilateral thalamic nuclei. These neurons were densely argyrophilic in Fink-Heimer sections. Rats with small lateral parietal cortical lesions had degenerating neurons limited to the medial ventroposteromedial nucleus. Large lesions involving the parasagittal sensorimotor cortex resulted in widespread neuronal damage in the ventroposteromedial, ventroposterolateral, intralaminar, and posterior nuclear regions but nowhere else. Immunoreactivity to laminin antibody decreased, and astrocytic proliferation was abundant in affected thalamic areas. These findings are consistent with retrograde neuronal degeneration due to thalamocortical fiber damage in ischemic cortical regions. Such lesions remote from the infarct may influence functional recovery in patients with stroke.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.