Abstract
Sleep apnea syndrome (SAS) is a breathing disorder while a person is asleep. The traditional method for examining SAS is Polysomnography (PSG). The standard procedure of PSG requires complete overnight observation in a laboratory. PSG typically provides accurate results, but it is expensive and time consuming. However, for people with Sleep apnea (SA), available beds and laboratories are limited. Resultantly, it may produce inaccurate diagnosis. Thus, this paper proposes the Internet of Medical Things (IoMT) framework with a machine learning concept of fully connected neural network (FCNN) with k-nearest neighbor (k-NN) classifier. This paper describes smart monitoring of a patient’s sleeping habit and diagnosis of SA using FCNN-KNN+ average square error (ASE). For diagnosing SA, the Oxygen saturation (SpO2) sensor device is popularly used for monitoring the heart rate and blood oxygen level. This diagnosis information is securely stored in the IoMT fog computing network. Doctors can carefully monitor the SA patient remotely on the basis of sensor values, which are efficiently stored in the fog computing network. The proposed technique takes less than 0.2 s with an accuracy of 95%, which is higher than existing models.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.