Abstract

In vivo, neural crest (NC) cells contribute critically to heart formation. The embryonic stem cells in the cardiac Embryonic Stem cell Test (ESTc) differentiate into a heterogeneous cell population including non-cardiomyocyte cells. The use of molecular biomarkers from different mechanistic pathways can refine quantitative embryotoxicity assessment. Gene expression levels representing different signalling pathways that could relate to beating cardiomyocyte formation were analysed at different time-points. Immunocytochemistry showed NC cells were present in the ESTc and RT-qPCR showed upregulation of NC related gene expression levels in a time-dependent manner. NC related genes were sensitive to VPA and its analogues 2-ethylhexanoic acid (EHA) and 2-ethylhexanol (EHOL) and indicated VPA as the most potent one. STITCH (‘search tool for interactions of chemicals’) analysis showed relationships between the examined signalling pathways and suggested additional candidate marker genes. Biomarkers from dedicated mechanistic pathways, e.g. NC differentiation, provide promising tools for monitoring specific effects in ESTc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call