Abstract

Multiple differentiation shown by a single cell line (GEM 81) of goldfish erythrophoroma (tumors of integumental erythrophores) cells after administration of chemical induction in vitro includes 1) melanogenesis, 2) formation of reflecting platelets, 3) synthesis of pteridines heterogeneous to this species, 4) formation of dermal skeletons such as teeth and fin rays, 5) production of neuronal characters, and 6) genesis of lentoid bodies. Melanogenic cells, highest in inducibility, also show remarkable phenotypic diversification in their cell morphology, pigmentation, and physiologic response. In this paper, the following findings are presented; a) multiple differentiation shown by erythrophoroma cells occurs on a clonal basis, making whole component cells of a given induced colony strikingly similar in their cell characters, and b) induced melanogenic clones manifest a remarkable polymorphism in their melanosome ultrastructure and receptor composition associated with motile response. The divergence covers concentric lamellar, multivesicular, fibrillar, and macroglobular types for the former, and a varying combination of receptors for epinephrine, melanin concentrating hormone (MCH), and melatonin for the latter. Because a spectrum of phenotypes expressed by differentiation-induced erythrophoroma cells is restricted to those of neural crest origin (except lentoid bodies) and polymorphism in induced melanized cells is composed mostly of a collection of a variety of known melanogenic characters, it is presumed that erythrophoroma cells are capable of multiple differentiation within the commitment as neural crest cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.