Abstract

The cerebral and cerebellar network involved in unimanual continuous and discrete movements was studied in blood oxygenation level-dependent functional magnetic resonance imaging (fMRI) at 3 T. Seven healthy right-handed volunteers were scanned (1) while drawing a circle with the tip of the right index finger (continuous motor task), and (2) while drawing a triangle with the tip of the right index finger (discrete motor task). In both motor tasks, extensive activations were observed in the sensorimotor (M1/S1), parietal, prefrontal, insular, lateral occipital (LOC) and anterior cerebellar cortices. Subcortical activations within red, thalamic and lentiform nuclei were also detected. However, discrete movements were specifically followed by the recruitment of the left orbitofrontal cortex, right dentate nucleus and the second cerebellar homunculus (HVIII), and bilateral and stronger activation of the sensorimotor cortical areas, whereas continuous movements specifically activated the right prefrontal cortex and the lateral hemispherical part of the neocerebellum (crus 1). We confirm the findings of previous studies showing partly distinct neural networks involved in monitoring continuous and discrete movements, but we found new differential neural relays within the prefrontal, insular and neocerebellar cortices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call