Abstract

The study of deaf and hearing native users of signed languages can offer unique insights into how biological constraints and environmental input interact to shape the neural bases of language processing. Here, we use functional magnetic resonance imaging (fMRI) to address two questions: (1) Do semantic and syntactic processing in a signed language rely on anatomically and functionally distinct neural substrates as it has been shown for spoken languages? and (2) Does hearing status affect the neural correlates of these two types of linguistic processing? Deaf and hearing native signers performed a sentence judgement task on German Sign Language (Deutsche Gebärdensprache: DGS) sentences which were correct or contained either syntactic or semantic violations. We hypothesized that processing of semantic and syntactic violations in DGS relies on distinct neural substrates as it has been shown for spoken languages. Moreover, we hypothesized that effects of hearing status are observed within auditory regions, as deaf native signers have been shown to activate auditory areas to a greater extent than hearing native signers when processing a signed language. Semantic processing activated low-level visual areas and the left inferior frontal gyrus (IFG), suggesting both modality-dependent and independent processing mechanisms. Syntactic processing elicited increased activation in the right supramarginal gyrus (SMG). Moreover, psychophysiological interaction (PPI) analyses revealed a cluster in left middle occipital regions showing increased functional coupling with the right SMG during syntactic relative to semantic processing, possibly indicating spatial processing mechanisms that are specific to signed syntax. Effects of hearing status were observed in the right superior temporal cortex (STC): deaf but not hearing native signers showed greater activation for semantic violations than for syntactic violations in this region. Taken together, the present findings suggest that the neural correlates of language processing are partly determined by biological constraints, but that they may additionally be influenced by the unique processing demands of the language modality and different sensory experiences.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call