Abstract
Schizotypal traits can be conceptualized as a phenotype for schizophrenia spectrum disorders. As such, a better understanding of schizotypal traits could potentially improve early identification and treatment of schizophrenia. We used connectome-based predictive modelling (CPM) based on whole-brain resting-state functional connectivity to predict schizotypal traits in 82 healthy participants. Results showed that only the negative network could reliably predict an individual's schizotypal traits (r=0.29). The 10 nodes with the highest edges in the negative network were those known to play a key role in sensation and perception, cognitive control as well as motor control. Our findings suggest that CPM might be a promising approach to improve early identification and prevention of schizophrenia from a spectrum perspective.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.