Abstract

Prenatal stress is hypothesized to have a disruptive impact on neurodevelopmental trajectories, but few human studies have been conducted on the long-term neural correlates of prenatal exposure to stress. The aim of this study was to explore the relationship between prenatal stress exposure and gray-matter volume and resting-state functional connectivity in a sample of 35 healthy women aged 14-40 years. Voxel-based morphometry and functional connectivity analyses were performed on the whole brain and in specific regions of interest (hippocampus and amygdala). Data about prenatal/postnatal stress and obstetric complications were obtained by interviewing participants and their mothers, and reviewing obstetric records. Higher prenatal stress was associated with decreased gray-matter volume in the left medial temporal lobe (MTL) and both amygdalae, but not the hippocampus. Variance in gray-matter volume of these brain areas significantly correlated with depressive symptoms, after statistically adjusting for the effects of age, postnatal stress and obstetric complications. Prenatal stress showed a positive linear relationship with functional connectivity between the left MTL and the pregenual cortex. Moreover, connectivity between the left MTL and the left medial-orbitofrontal cortex partially explained variance in the depressive symptoms of offspring. In young women, exposure to prenatal stress showed a relationship with the morphometry and functional connectivity of brain areas involved in the pathophysiology of depressive disorders. These data provide evidence in favor of the hypothesis that early exposure to stress affects brain development and identified the MTL and amygdalae as possible targets of such exposure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call