Abstract

Warning stimuli in sensorimotor tasks induce a state of preparedness characterized by increased alertness, focused attention and immobility. This state of attentive anticipation is associated with heart rate deceleration. Ageing affects the amplitude of the anticipatory cardiac deceleration responses; yet, the impact of this physiological change on cognitive performance is still to be elucidated. In fact, how cardiac deceleration relates to brain function and cognitive performance in the context of perceptual decision-making and different levels of decision complexity remains unknown. Here, we aimed to investigate the relationship between cardiac deceleration, brain function, and performance in perceptual decision tasks and how these associate with age-related changes. We measured simultaneously the electrocardiogram, the pupilogram, and the electroencephalogram in 36 young and 39 older adults, while they were engaged in two auditory cued reaction time tasks: a detection task and a go/no-go task requiring inhibitory control. We observed robust cardiac deceleration responses that increased with increasing task complexity. Notably, stronger modulation of the cardiac response across tasks was associated with the ability to maintain response speed as decision complexity increased suggesting a link between cardiac deceleration and facilitation of perceptual decisions. Additionally, cardiac deceleration appears to have a cortical origin as it correlated with frontocentral event-related potentials. In contrast, beta oscillations at baseline and task-related beta suppression were not predictive of cardiac deceleration suggesting a dissociation between sensorimotor oscillatory activity and this cardiac response. Importantly, we found age-related changes in anticipatory cardiac deceleration associated with deficits in perceptual decision-making.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.