Abstract
Walking patterns are adaptable in response to different environmental demands, which requires neural input from spinal and supraspinal structures. With an increase in age, there are changes in walking adaptation and in the neural control of locomotion, but the age-related changes in the neural control of locomotor adaptation is unclear. The purpose of this narrative review is to establish a framework where the age-related changes of neural control of human locomotor adaptation can be understood in terms of reactive feedback and predictive feedforward control driven by sensory feedback during locomotion. We parse out the effects of aging on (a) reactive adaptation to split-belt walking, (b) predictive adaptation to split-belt walking, (c) reactive visuomotor adaptation, and (d) predictive visuomotor adaptation, and hypothesize that specific neural circuits are influenced differentially with age, which influence locomotor adaptation. The differences observed in the age-related changes in walking adaptation across different locomotor adaptation paradigms will be discussed in light of the age-related changes in the neural mechanisms underlying locomotion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.