Abstract

Autism Spectrum Disorder (ASD) is a behavioral syndrome caused by complex genetic and non-genetic risk factors. It has been proposed that these risk factors lead to alterations in the development and 'wiring' of brain circuits and hence, the emergence of ASD. Although several lines of research lend support to this theory, etiological and clinical heterogeneity, methodological issues and inconsistent findings have led to significant doubts. One of the best established, albeit rare, causes of ASD is the genetic condition Tuberous Sclerosis Complex (TSC), where 40% of individuals develop ASD. A recent study by Peters and Taquet et al. analyzed electroencephalography (EEG) data using graph theory to model neural 'connectivity' in individuals with TSC with and without ASD and cases with 'idiopathic' ASD. TSC cases exhibited global under-connectivity and abnormal network topology, whereas individuals with TSC + ASD demonstrated similar connectivity patterns to those seen in individuals with idiopathic ASD: decreased long- over short-range connectivity. The similarity in connectivity abnormalities in TSC + ASD and ASD suggest a common final pathway and provide further support for 'mis-wired' neural circuitry in ASD. The origins of the connectivity changes, and their role in mediating between the neural and the cognitive/behavioral manifestations, will require further study.Please see related research article here http://www.biomedcentral.com/1741-7015/11/54

Highlights

  • The recent and rapid rise in the prevalence of Autism Spectrum Disorder (ASD) has fuelled intensive research into the causes and neurobiological basis of ASD, with major advances in identifying the genetic factors involved [1]

  • The findings have revealed considerable etiological heterogeneity and marked variability in phenotypic expression, which has led to uncertainty as to whether there exist several different subtypes of ASD or whether the causal factors converge in a final common pathway

  • The dramatic advances in understanding the molecular mechanisms underlying fragile × syndrome and Tuberous Sclerosis Complex (TSC; two of the best established causes of ASD [3]) and the concomitant and exciting advances in drug therapies for these conditions, have highlighted the importance of these model systems for understanding whether and how ASD develops and if, as pre-clinical studies suggest, cognitive and behavioral outcomes are improved by the novel therapies [4]

Read more

Summary

Introduction

The recent and rapid rise in the prevalence of Autism Spectrum Disorder (ASD) has fuelled intensive research into the causes and neurobiological basis of ASD, with major advances in identifying the genetic factors involved [1]. * Correspondence: patrick.bolton@kcl.ac.uk 1MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London, De Crespigny Park Road, Denmark Hill, London, SE5 8AF, UK Full list of author information is available at the end of the article

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.