Abstract

While neonicotinoid insecticides impair visually guided behaviours, the effects of their metabolites are unknown and measurements of environmental concentrations of neonicotinoids, typically lower than those required to elicit toxic effects, tend to exclude metabolites. Here we examined the contributions of imidacloprid and two of its metabolites, imidacloprid-olefin and 5-hydroxy-imidacloprid, on neural conduction velocity, visual motion detection and flight in the locust (Locusta migratoria) using a combination of electrophysiological and behavioural assays. We show reduced visual motion detection and impaired flight behaviour following treatment of metabolite concentrations equal to sublethal doses of the parent compound. Additionally, we show for the first time that imidacloprid and its metabolites result in a decrease in conduction velocity along an unmyelinated axon. We suggest that secondary effects of the insecticide on the biophysical properties of the axon may result in decreased neural conduction. As these metabolites display neurotoxicity similar to the parent compound they should be considered when quantifying environmental concentrations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call