Abstract

Direct determination of the process deactivation model relates to catalyst stability and plays a crucial role in the process control. The present study aims at investigating the influence of nickel loading (10–20 wt%) on the deactivation model parameters of Ni/Al2O3 catalyst prepared by incipient wetness impregnation. Artificial neural network (ANN) predicts a steady-state activity of the catalyst for the ultimate purpose of a deactivation model selection. The results obtained from an ANN demonstrated that the first-order general power law expressions (GPLE1 model) could adequately predict the catalytic activity during long reaction time. Considering various loadings of nickel on an alumina support, better stability of 20Ni/Al2O3 catalyst was confirmed. Model parameters affirmed that a decrease in the loading of the nickel-made active phase increases the deactivation rate of the catalyst.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.