Abstract

In this study, two artificial neural network models viz. supervised Feed-Forward Back Propagation (FF-BP) and unsupervised Kohonen Self-Organizing Map (K-SOM) have been developed to predict the Crop Water Stress Index (CWSI) using air temperature, relative humidity, and canopy temperature. Field experiments were conducted on Indian mustard to observe the crop canopy temperature under different levels of irrigation treatment during the 2017 and 2018 cropping seasons. The empirical CWSI was computed using well-watered and non-transpiring baseline canopy temperatures. The K-SOM and FF-BP CWSI predictions were compared with the empirical CWSI estimates and both performed satisfactorily. Of the two, however, the K-SOM was better with R2 (coefficient of determination) of 0.97 and 0.96 for model development and validation, respectively; corresponding values for FF-BP were 0.86 and 0.75. The results of the study suggest that neural network modelling offers significant potential for reliable prediction of the CWSI, which can be utilized in irrigation scheduling and crop stress management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.