Abstract

Standardization of culture methods for human pluripotent stem cell (PSC) neural differentiation can greatly contribute to the development of novel clinical advancements through the comprehension of neurodevelopmental diseases. Here, we report an approach that reproduces neural commitment from human induced pluripotent stem cells using dual-SMAD inhibition under defined conditions in a vitronectin-based monolayer system. By employing this method it was possible to obtain neurons derived from both control and Rett syndrome patients' pluripotent cells. During differentiation mutated cells displayed alterations in the number of neuronal projections, and production of Tuj1 and MAP2-positive neurons. Although investigation of a broader number of patients would be required, these observations are in accordance with previous studies showing impaired differentiation of these cells. Consequently, our experimental methodology was proved useful not only for the generation of neural cells, but also made possible to compare neural differentiation behavior of different cell lines under defined culture conditions. This study thus expects to contribute with an optimized approach to study the neural commitment of human PSCs, and to produce patient-specific neural cells that can be used to gain a better understanding of disease mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.