Abstract
Sentiment classification aims to detect polarity from a piece of text. The polarity is usually positive or negative, and the text genre is usually product review. The challenges of sentiment classification are that it is hard to capture semantic of reviews, and the labeled data is hard to annotate. Therefore, we propose neural co-training to learn the semantic representation of each review using the neural network model, and learn the information from unlabeled data using a co-training framework. In particular, we use the attention-based bi-directional Gated Recurrent Unit (Att-BiGRU) to model the semantic content of each review and regard different categories of the target product as different views. We then use a co-training framework to learn and predict the unlabeled reviews with different views. Experiment results with the Yelp dataset demonstrate the effectiveness of our approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Asian and Low-Resource Language Information Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.