Abstract
Advances in technology are opening new windows on the structural connectivity and functional dynamics of brain circuits. Quantitative frameworks are needed that integrate these data from anatomy and physiology. Here, we present a modeling approach that creates such a link. The goal is to infer the structure of a neural circuit from sparse neural recordings, using partial knowledge of its anatomy as a regularizing constraint. We recorded visual responses from the output neurons of the retina, the ganglion cells. We then generated a systematic sequence of circuit models that represents retinal neurons and connections and fitted them to the experimental data. The optimal models faithfully recapitulated the ganglion cell outputs. More importantly, they made predictions about dynamics and connectivity among unobserved neurons internal to the circuit, and these were subsequently confirmed by experiment. This circuit inference framework promises to facilitate the integration and understanding of big data in neuroscience.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.