Abstract
Transient expression of the differentiation and tumor cell surface antigen gp130(RB13-6) characterizes a subset of rat glial progenitor cells susceptible to ethylnitrosourea-induced neurooncogenesis. gp130(RB13-6) is as a member of an emerging protein family of ecto-phosphodiesterases/nucleotide pyrophosphatases that includes PC-1 and the tumor cell motility factor autotaxin. We have investigated the potential role of gp130(RB13-6) in glial differentiation by transfection of three cell lines of different origin that do not express endogenous gp130(RB13-6) (NIH-3T3 mouse fibroblasts; C6 and BT7Ca rat glioma cells) with the cDNA encoding gp130(RB13-6). The effect of gp130(RB13-6) expression was analyzed in terms of overall cell morphology, the expression of glial cell-specific marker proteins, and invasiveness. Transfectant sublines, consisting of 100% gp130(RB13-6)-positive cells, exhibited an altered, bipolar morphology. Fascicular aggregates of fibroblastoid cells subsequently developed into mesh-like patterns. Contrary to the parental NIH-3T3 and BT7Ca cells, the transfectant cells invaded into collagen type I. As shown by immunofluorescence staining of the transfectant sublines as well as of primary cultures composed of gp130(RB13-6)-positive and -negative cells, expression of gp130(RB13-6) induced coexpression of proteins typical for glial cells and their precursors, i.e., glial fibrillary acidic protein, the low affinity nerve growth factor receptor, and the neural proteins Thy-1, Ran-2, and S-100. In accordance with its expression in the immature rat nervous system, gp130(RB13-6) may thus have a significant role in the glial differentiation program and its subversion in neurooncogenesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.