Abstract
A blind beamforming algorithm based on a neural network is presented according to the characteristic of cyclostationary signals. This method transforms the question of estimating beamformer weight vectors into the one of computing the SVD of the cross correlation matrix of array input signals and their frequency shift signals. A cross correlation neural network is introduced to compute the SVD of the cross correlation matrix so as to reduce the computational complexity and carry out the blind beamforming more efficiently. The improved cross-coupled Hebbian learning rule presented can make the weights of the neural network converge much fast. Therefore, it is more promising in the practical use. This method can restrain noise and interference. Simulation proves its correctness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.