Abstract

Although humans are unique among animals in their ability to manipulate symbolic numbers, we share with other species an approximate number sense that allows us to estimate and compare the number of objects or events in a set, such as the number of apples in a tree. Our ability to discriminate the numerosity of two sets decreases as the ratio between them becomes smaller (e.g., 8 vs 16 items is harder to discriminate than 8 vs 32 items). The intraparietal sulcus (IPS) plays a key role in this numerical approximation. Neuronal populations within the IPS code for numerosity, with stimuli of different numerosities eliciting discriminable spatial patterns of activity. The developmental origins of these IPS number representations are not known. Here, we tested the hypothesis that representations of number in the IPS require visual experience with object sets, by working with individuals blind from birth. While undergoing fMRI, congenitally blind (n = 17) and blindfolded sighted (n = 25) participants judged which of two sequences of beeps was more numerous. In both sighted and blind individuals, patterns of activity in the IPS discriminated among different numerosities (4, 8, 16 vs 32), with better discrimination in the IPS of the blind group. In both groups, decoding performance decreased as the ratio between numerosities decreased (e.g., 8 vs 16 was less discriminable than 8 vs 32). These findings suggest that number representations in the IPS either have innate precursors, or that auditory or tactile experience with sets is sufficient for typical development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call