Abstract
This work concisely reviews and unifies the analysis of different variants of neural associative networks consisting of binary neurons and synapses (Willshaw model). We compute storage capacity, fault tolerance, and retrieval efficiency and point out problems of the classical Willshaw model such as limited fault tolerance and restriction to logarithmically sparse random patterns. Then we suggest possible solutions employing spiking neurons, compression of the memory structures, and additional cell layers. Finally, we discuss from a technical perspective whether distributed neural associative memories have any practical advantage over localized storage, e.g., in compressed look-up tables.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.