Abstract

The nervous system of the brachiolaria larva of the starfish, Asterina pectinifera, was characterized using immunohistochemistry with the neuron-specific monoclonal antibodies 1E11 and 1F9 and an anti-serotonin antibody. The antigen recognized by 1F9 was determined by immunoprecipitation, peptide identification by mass spectrometry, and cDNA cloning as a novel START (steroidogenic acute regulatory protein [StAR]-related lipid transfer) domain-containing protein. Nerve cells are prominent in the brachiolar arms, ciliary bands, and adult rudiment. The brachiolar arms contain sensory-like nerve cells in the adhesive papillae, flask-shaped nerve cells in the adhesive disk, and bundles of fibers with branches interconnecting them. In the ciliary bands, nerve cells are interconnected with axon bundles along the ciliary bands and some neurons send fibers toward the oral and aboral epidermis. These neural components of the ciliary bands are regionally modified to form masses such as lateral and oral ganglia. The future aboral epidermis of the adult rudiment forms a nerve plexus with cell bodies enriched over spicules. Serotonergic nerve cell bodies are found throughout the nervous system except in the adhesive disk, the bipinnaria arms, and the adult rudiment. In addition, there are neural components in the esophagus and in the coelom where nerve fibers or bundles have distinct orientations with respect to the muscle fibers. The neuroanatomy of the brachiolaria suggests how it may function in controlling larval physiology and identifies intriguing problems on the origin of larval and adult nerves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call