Abstract
Opinion expressions extraction is one of the main frameworks in opinion mining. Extracting negative opinions is more difficult than positive opinions because of indirect expressions. Especially, in the domain of consumer reviews, consumers are easier to be influenced by negative reviews when making decision. In this paper, we focus on the extraction of negative opinion expressions of consumer reviews. State-of-art methods heavily depend on task specific knowledge in the form of handcrafted features and data pre-processing. In this paper, we use a neural architecture by combining word embeddings, Bi-LSTM and CRF. We add a conditional random fields (CRF) layer to bidirectional long-short term memory (Bi-LSTM) recurrent neural network language model, which provides sentence level tag information and improves the result of experiment. Our model requires no feature engineering and outperforms feature dependent methods when experimenting on real-world reviews from Amazon.com.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.