Abstract
This article aims at this problem of adaptive neural tracking control for state-constrained systems. A general fixed-time stability criterion is first presented, by which an adaptive neural control algorithm is developed. Under the action of the proposed adaptive neural tracking controller, the tracking error converges into a small neighborhood around the origin in fixed time; meanwhile, all system states abide by the corresponding state constraints for all the time. The main difference between the present research and the previous control schemes for state-constrained systems is that this article proposes a novel and feasible approach to ensure that the constructed virtual control signals satisfy the state constraints on the corresponding states viewed as the virtual control inputs. Such an approach guarantees theoretically that all the system states cannot violate their constrained requirements at any time. Finally, two simulation examples provide support to the proposed results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.